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Abstract. The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and

climate change that can only be understood within the context of the natural variability of physical and chemical conditions.

Controlled by its complex bathymetry, iron enriched freshwater discharge, and wind and solar radiation, the GOA is a highly

dynamic system that exhibits large inorganic carbon variability from subseasonal to interannual timescales. This variability is

poorly understood due to the lack of observations in this expansive and remote region. To improve our conceptual understanding5

of the system, we developed a new model set-up for the GOA that couples the three-dimensional Regional Oceanic Model

System (ROMS), the Carbon, Ocean Biogeochemistry and Lower Trophic (COBALT) ecosystem model, and a high resolution

terrestrial hydrological model. Here, we evaluate the model on seasonal to interannual timescales using the best available

inorganic carbon observations. The model was particularly successful in reproducing observed aragonite oversaturation and

undersaturation of near-bottom water in May and September, respectively. The largest deficiency of the model is perhaps its10

inability to adequately simulate spring time surface inorganic carbon chemistry, as it overestimates surface dissolved inorganic

carbon, which translates into an underestimation of the surface aragonite saturation state at this time. We also use the model

to describe the seasonal cycle and drivers of inorganic carbon parameters along the Seward Line transect in under-sampled

months. As such, model output suggests that a majority of the near-bottom water along the Seward Line is seasonally under-

saturated with regard to aragonite between June and January, as a result of upwelling and remineralization. Such an extensive15

period of reoccurring aragonite undersaturation may be harmful to CO2 sensitive organisms. Furthermore, the influence of

freshwater not only decreases aragonite saturation state in coastal surface waters in summer and fall, but simultaneously also

decreases surface pCO2, thereby decoupling the aragonite saturation state from pCO2. The full seasonal cycle and geographic

extent of the GOA region is undersampled, and our model results give new and important insights for months of the year and

areas that lack in situ inorganic carbon observations.20
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1 Introduction

The Gulf of Alaska Large Marine Ecosystem (GOA-LME) is home to highly productive commercial and subsistence fisheries

including salmon, pollock, crab, Pacific cod, halibut, mollusks and other shellfish (Mundy, 2005). The dynamics of these fish-

eries and their susceptibility to climate change and ocean acidification remains poorly understood. Large glaciated mountains5

(Figure 1), complex bathymetry, seasonally varying cycles of winds, iron enriched freshwater discharge, and solar radiation

(Stabeno et al., 2004; Weingartner et al., 2005; Janout et al., 2010) set the stage for high temporal and spatial physical, chem-

ical, and biological variability across the GOA continental shelf. At the same time, the GOA-LME is sparsely sampled due to

its large spatial extent, harsh environmental conditions, and remote geography. The societal importance of the ecosystem, the

large natural variability, and the lack of data make this region a challenge and a priority for understanding ecosystem dynamics,10

inorganic carbon chemistry, the regional manifestation of climate change and ocean acidification, and its potential impact on

the nation’s fisheries, economies, and communities (Mathis et al., 2014).

The GOA-LME is especially susceptible to the effects of climate change and ocean acidification. This high latitude region

is naturally low in [CO2−
3 ] due to the increased solubility of CO2 at low temperatures, seasonal increase in vertical mixing,

riverine and glacial inputs, and inner shelf dynamics that tend to retain coastal discharges close to shore (Feely and Chen, 1982;15

Feely et al., 1988; Byrne et al., 2010; Weingartner et al., 2005). The freshwater fluxes into the coastal zone are increasing (Neal

et al., 2010; Hill et al., 2015; Hood et al., 2015; Beamer et al., 2016) as this sub-polar region continues to warm and deglaciate

(Arendt et al., 2002; Larsen et al., 2007; O’Neel et al., 2005). Because glacial meltwater in this region is endowed with low

total alkalinity (TA) relative to dissolved inorganic carbon (DIC) (Stackpoole et al., 2016, 2017), increasing freshwater dis-

charge pushes the system further towards undersaturation with respect to aragonite, and thereby likely exacerbating the effects20

of ocean acidification (Evans et al., 2014).

The GOA-LME is characterized by high concentrations of biologically available dissolved iron (dFe) and low nitrate (NO3)

concentrations on the shelf, and low dFe and high NO3 concentrations off-shelf (Aguilar-Islas et al., 2015; Wu et al., 2009;

Lippiatt et al., 2010; Martin et al., 1989). These two limiting nutrients lead to a diatom-dominated phytoplankton commu-

nity composition in the dFe-rich near-shore and small phytoplankton in dFe-poor off-shelf areas (Strom et al., 2007). Limited25

inorganic carbon observations suggest that along with primary productivity and remineralization, physical processes such as

downwelling, on-shelf intrusions of deep water, tidal mixing, freshwater discharge, and eddies, are important drivers of the

inorganic carbon system dynamics. High biological productivity in spring depresses pCO2 in the water column, resulting in

shelf waters supersaturated with respect to aragonite, and supporting large fluxes of atmospheric CO2 into the ocean (Fabry

et al., 2009; Evans and Mathis, 2013). In September, bottom waters along the shelf are undersaturated with respect to aragonite.30

This large-scale pattern of aragonite undersaturation has been speculated to be a result of on-shelf intrusion of DIC-rich Pacific

basin water near the seafloor, and remineralization of large quantities of organic matter produced during spring blooms (Fabry

et al., 2009; Evans et al., 2014). Recent inorganic carbon surveys near marine tidewater glaciers in Glacier Bay, Alaska and
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Figure 1. Map of the "GOA-COBALT" model domain showing depth [m] of the ocean in color and altitude of the mountains [m] in grey.

Glaciated areas are indicated by turquoise coloring of the mountains. The Seward Line is shown by the black line. PWS = Prince William

Sound.

Prince William Sound also suggest that glacial melt water, which is endowed with naturally low total alkalinity (TA), induces

seasonal aragonite undersaturation in surface waters (Evans et al., 2014; Reisdorph and Mathis, 2014) and forms corrosive

mode water that may subsequently be advected and potentially subducted to distant shelf regions (Evans et al., 2013, 2014).

Insufficient inorganic carbon data coverage impede our ability to understand the interplay between drivers in different seasons

and to determine the relative importance of the various controls of the inorganic carbon system at different locations. Ongoing5

and historic inorganic carbon system observations in the GOA consist of a limited set of shipboard oceanographic observa-

tions, underway measurements from research vessels and scientific sampling systems installed on ferries, and a small number

of sensors deployed at fixed nearshore coastal locations (Fabry et al., 2009; Evans and Mathis, 2013; Evans et al., 2014, 2015;

Reisdorph and Mathis, 2014; Miller et al., 2018). These draw an incomplete picture of the spatial and temporal variability.

Also, because variability is large from seasonal to decadal scales in these waters, the timeseries from deployed sensors at fixed10

nearshore locations are not long enough yet to detect an anthropogenic trend in seawater pCO2 and pH (Sutton et al., 2018).

In other shelf systems, regional biogeochemical models have successfully been used to better understand past, present, and fu-

ture inorganic carbon dynamics and impacts of climate change and ocean acidification on these ecosystems (Hauri et al., 2013;

Turi et al., 2016; Gruber et al., 2012; Franco et al., 2018). Previous regional GOA-LME modeling studies focused on refining

large scale and mesoscale circulation features (Dobbins et al., 2009; Xiu et al., 2012), iron limitation (Fiechter and Moore,15
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2009), and the influence of Ekman pumping (Fiechter et al., 2009), and eddies (Coyle et al., 2012) on the timing and magni-

tude of the spring bloom. There are only two regional models that simulate the oceanic carbon cycle in the GOA (Siedlecki

et al., 2017; Xiu and Chai, 2014). However, neither of these models simulate the influence of spatially and temporally highly

variable freshwater input along the coast. Siedlecki et al. (2017) used the monthly riverine input climatology by Royer (1982)

and applied it equally to the top most vertical cell along the land mask, whereas Xiu and Chai (2014) did not include riverine5

input at all. Therefore, to fill gaps in the understanding of the inorganic carbon cycle in the GOA we need a moderately high

resolution model that includes 1) important physical processes such as downwelling, eddies, and cross-shelf fluxes, 2) the

carbon cycle, 3) the large spatial and temporal variability of freshwater input, 4) historical simulation long enough to be able to

distinguish natural variability from the anthopogenic longterm trend, 5) multiple phytoplankton groups, and 6) iron limitation

to reproduce the highly productive nearshore and high-nutrient low-chlorophyll offshore regions.10

Here, we introduce a new GOA model that includes a three-dimensional regional ocean circulation model, a complex ecosys-

tem model, and a moderately high-resolution terrestrial hydrological model. This model system will allow us to better simulate

the influence of variations in past freshwater runoff, full suite of atmospheric forcing and physical air-sea fluxes of heat, water

vapor and momentum, and atmospheric CO2 on the physical, chemical, and biological oceanography. We make a thorough

model evaluation to test the model’s capability of simulating seasonal and interannual inorganic carbon patterns, and use it to15

study the seasonal variability and drivers of the inorganic carbon system along the historic Seward Line (Figure 1).

2 Methods

2.1 Model set-up

We used a GOA configuration of the three-dimensional physical Regional Oceanic Model System (ROMS, Shchepetkin and

McWilliams (2005)). ROMS is a free-surface, hydrostatic primitive equation and finite volume (Arakawa C-grid) ocean cir-20

culation model. The vertical discretization is based on a terrain-following coordinate system (50 depth levels), with increased

resolution towards the surface and the bottom of the ocean. Due to shallower bathymetry, the shelf and coastal areas have

higher vertical resolution. The horizontal resolution is eddy resolving at 4.5 km. The grid covers a large coastal area from

the Canadian - US border in the Southeast to west of Sandpoint in the middle of the Aleutian Islands (Figure 1). The current

model configuration is based on Danielson et al. (2016), although with a larger grid extent and a lower horizontal resolution to25

accommodate the computationally intense ecosystem model. We attempt to improve on the GOA domain used by Coyle et al.

(2012) in that we include the Alexander Archipelago. Prior experiments in the GOA have shown that the model had insufficient

near-surface vertical mixing, leading to overly fresh water at the surface which is challenging to mix down. In order to improve

on our surface mixing, we added the parameterization of Li and Fox-Kemper (2017). They looked to Large-eddy simulations

(LESs) to study the effects of unresolved Stokes drift driven by surface waves and the resulting Langmuir circulation on the30

vertical mixing in a variety of stratification regimes. Their parameterization is now being routinely used in global climate sim-

ulations (e.g. Adcroft et al. (2019)).

The hydrological model is based on a suite of weather, energy-balance snow ice/melt, soil water balance, and runoff routing

4
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Table 1. Summary of the definitions, abbreviations, values and units of the model parameters adjusted from Van Oostende et al. (2018) to

better represent the ecosystem in higher northern latitudes (Strom et al., 2010)

.

Parameter Symbol Value Units

Iron scavenging coefficient onto sinking detritus alpha fescav 10/a sec−1

Chl-a specific initial slope of the photosynthesis-light curve

Large chain-forming phytoplankton alpha Lg 3.0e-6 * b (g C) (g Chl−1) (W m−2)−1

Medium Phytoplankton alpha Md 3.33e-6 * b (g C) (g Chl−1) (W m−2)−1

Small Phytoplankton alpha Sm 6.0e-6 * b (g C) (g Chl−1) (W m−2)−1

a = 365.25*24*3600, b = 4.5998

models forced with Climate Forecast System Reanalysis data products (Saha et al., 2010).

The biogeochemical model used for this study is a modified version of the Carbon, Ocean Biogeochemistry and Lower Trophic

(COBALT) marine ecosystem model, which has been applied on a global scale in conjunction with the Geophysical Fluid

Dynamics Laboratory’s (GFDL’s) earth system model (Stock et al., 2014). Only recently, COBALT was coupled to ROMS and

modified with an additional coastal chain-forming diatom to better represent biogeochemical processes and properties in highly5

productive coastal regions (3PS-COBALT, Van Oostende et al. (2018)). 3PS-COBALT resolves the cycles of nitrogen, carbon,

phosphate, silicate, iron, calcium carbonate, oxygen, and lithogenic material with 36 state variables. The model contains small

phytoplankton that are grazed by microzooplankton, a medium phytoplankton that can be consumed by small copepods and a

larger, chain forming diatom, which can only be grazed by large copepods and krill. Light, temperature, the most limiting nu-

trient and metabolic costs are used to calculate primary productivity for each phytoplankton group. The chlorophyll-to-carbon10

ratio is dynamic and based on light (Manizza et al., 2005) and nutrient limitations. Iron limitation depends on an internal cell

quota and nitrate/phosphate limitations are simply dependent on their ambient concentrations in the seawater. The currency of

biomass and productivity in the model is nitrogen. Organic nitrogen is converted into organic carbon following the Redfield

Ratio of 106:16 (Redfield et al., 1963). Dissolved inorganic carbon (DIC) and TA are state variables and dictate the inorganic

carbon system. Like all other tracer concentrations in the model, these two variables are affected by diffusion, horizontal and15

vertical advection, and sources minus sink terms that include net primary production, CaCO3 formation and dissolution both

in the water column and sediments, detritus remineralization in the water-column and sediments, zooplankton respiration, and

atmosphere-ocean CO2 fluxes. The Chl-a specific initial slope of the photosynthesis-light curve and iron scavenging coeffi-

cient onto sinking detritus were both adjusted to better represent the GOA biogeochemistry and ecosystem (Table 1). All other

constants are based on Van Oostende et al. (2018).20
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2.2 Initial Conditions, Boundary Conditions and Forcing

Physical initial and boundary conditions for currents, ocean temperature, salinity, and sea surface height were taken from the

Simple Ocean Data Assimilation ocean/sea ice reanalysis 3.3.1 [SODA, Carton et al. (2018), available as five-day averages].

The model was forced at the surface with three-hourly winds, surface air temperature, pressure, humidity, precipitation and

radiation from the Japanese 55-year Reanalysis (JRA55-do) 1.3 project (Tsujino et al., 2018). The atmospheric fields are used5

to compute surface stresses and fluxes using a bulk flux algorithm (Large and Yeager, 2008). Precipitation is solely counted

as a negative salt flux and does not change any volume or dilute any other tracers. Along its coastal boundary, freshwater was

brought in from numerous rivers and tidewater glaciers. This was done with a point-source river input through exchange of

mass, momentum and tracers through the coastal wall at all depths (Danielson et al., in review). A hydrological model provided

riverine input at a 1 km resolution and at a daily timestep (Beamer et al., 2016). The hydrological model is based on a suite10

of weather, energy-balance snow ice/melt, soil water balance, and runoff routing models forced with Climate Forecast system

Reanalysis data (Saha et al., 2010). Nutrient, DIC, and TA concentrations in the freshwater are based on available observations

and are summarized in (Table 2). As found in other freshwater data (Rheuban et al., 2019), DIC > TA showing that the fresh-

water discharging into the GOA is quite acidic (Stackpoole et al., 2016, 2017).

DIC and TA initial conditions for the hindcast simulation were extracted from the mapped version 2 of the Global Ocean15

Data Analysis Project dataset (GLODAPv2.2016b, Lauvset et al. (2016)). GLODAP DIC data, which is referenced to 2002,

was normalized to 1980 using the anthropogenic CO2 estimates for the GOA by Carter et al. (2017). A seasonal cycle was

added to the surface based on Takahashi et al. (2014). Following Hauri et al. (2013), DIC and TA are assumed to vary through-

out the upper 200 m of the water column, but are attenuated proportional to the seasonal variations of temperature across

depth. Each year, DIC boundary conditions increase as a result of anthropogenic CO2 increase, following estimates for the20

region made by Carter et al. (2017). Nitrate, phosphate, oxygen, and silicate initial conditions were taken from the World

Ocean Atlas 2013 (Garcia et al., 2013). All other variables were initialized based on output from a global model simu-

lation (Stock et al., 2014). Atmospheric pCO2 was forced with monthly means derived from the Mauna Loa CO2 record

(https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html).

3 Model Evaluation25

3.1 Physics

The model domain is strongly influenced by freshwater coming from hundreds of glacier-fed rivers and tidewater glaciers that

ring the GOA. Our approach of using a hindcast simulation from a highly resolved land hydrography model (Beamer et al.,

2016) to force the freshwater input was recently evaluated through comparison to salinity, temperature, velocity, and dynamic

height observations (Danielson et al., in review). The influence of the springtime freshet is well reproduced by the model, with30

low salinities (∼26 PSU) in the nearshore upper 10 to 20 m of the water column (r ∼ 0.5-0.6, p ∼ 0.05). While the correlation

between salinity observations and model output is only slightly weaker in summertime, the model has difficulty in reproducing

6
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Table 2. Table listing riverine dissolved inorganic carbon, total alkalinity, nitrate, dissolved iron, dissolved oxygen, and temperature values.

When seasonal observations were available, the variables followed a seasonal cycle. These variables are listed with their mean, maximum,

and minimum levels. All other variables were initialized with a very small number.

Parameter Value Units Reference

Dissolved inorganic carbon 397, 446, 365 umol kg−1 Kenai river (Stackpoole et al., 2016, 2017)

Total alkalinity 366, 410, 333 umol kg−1 Kenai river (Stackpoole et al., 2016, 2017)

Iron 30 nmol kg−1 (Aguilar-Islas et al., 2015)*

Nitrate 4.86, 8.91, 1.5 umol kg−1 Herbert River (Hood and Berner, 2009)

Temperature 5.06, 11.88, 0.16 ◦C Danielson, personal communication

Dissolved oxygen 386.5, 405.2, 355.1 umol kg−1 Cowee Creek (Fellman et al., 2015)

*Aguilar-Islas et al. (2015) observed a maximum of 10 nmol kg−1 dFe in nearshore waters with a salinity of 25. In order to model high nearshore

dFe values (see Figure 2), riverine dFe was set to 30 nmol kg−1.

small-amplitude salinity variations between October and March, when riverine intput is lowest and the signal to noise ratio of

salinity is small. Temperature is particularly well modelled in the first half of the year, with highest correlations (r ∼ 0.9, p <

0.001) in the middle of the water column. The model is also able to skilfully reproduce monthly dynamic height anomalies in

summer, fall, and winter. Overall, freshwater fluxes used in this study are more realistic than in previous studies because they

are derived from a temporally and spatially highly resolved hindcast simulation forced with meteorological reanalysis data5

sets. Compared to previous studies (Royer, 1982; Wang et al., 2004; Hill et al., 2015; Siedlecki et al., 2017), this current model

configuration is better able to reproduce low salinity levels in coastal areas across the GOA and can thereby more adequately

reproduce the Alaska Coastal Current (Danielson et al., in review).

3.2 Nutrients and Chl-α10

High concentrations of biologically available dFe prevail across the inner to mid GOA shelf due to the dFe-rich input of

glacially fed rivers (Aguilar-Islas et al., 2015; Wu et al., 2009; Lippiatt et al., 2010). While these shelf areas are low in NO3,

they border the NO3-rich and dFe-poor waters off-shelf (Martin et al., 1989). The spatial variability of these two limiting

nutrients orchestrate the phytoplankton community composition, with diatom-dominated areas in the dFe-rich near-shore en-

vironment and small phytoplankton in iron depleted, offshore areas (Strom et al., 2010). Here, we first evaluate the modelled15

spatial variability of surface dFe, NO3, and Chl-α by comparing it to in situ and satellite observations (Aguilar-Islas et al.,

2015; Lippiatt et al., 2010; Crusius et al., 2017; MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, 2014,

Accessed 08/17/2019)

dFe observations along a transect near the Copper River estuary suggest that coastal surface concentrations can reach up to 9.4

nmol kg−1 in mid to late summer west of Prince William Sound (Figure 2a), when glacial melt and riverine input are highest.20

These surface concentrations decrease rapidly with distance from shore, with levels of <1 nmol kg−1 near the shelf break and

7
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Figure 2. Observed (left) and modeled (right) surface dissolved iron (a, dFe [nmol kg−1]) and nitrate (b, NO3 [µmol kg−1]) concentrations.

The observations were taken in July, August, and September (Aguilar-Islas et al., 2015; Lippiatt et al., 2010; Crusius et al., 2017). The model

output is based on a mean of modelled July, August, and September values from a 1980 to 2013 climatology. Dissolved iron and nitrate are

plotted on a log scale.

beyond. The horizontal surface dFe gradient across the shelf, with high dFe concentrations in coastal areas and dFe levels near

depletion off-shore, was simulated well by the model. For example, the model shows dFe values of up to 8 nmol kg−1 (Figure

2a) in some coastal areas and low concentrations (< 0.5 nmol kg−1) at the shelf break. On average, the model underestimates

summertime surface iron concentrations by ∼ 2 nmol kg−1 despite the relatively high dFe riverine boundary condition (Table

2).5

The low observed surface summertime values of NO3 in coastal areas are simulated well by the model. Observed NO3 values

range up to 5.4 µmol kg−1 (with exception of a few outliers in southeast Alaska) and modelled surface NO3 concentrations

also only reach a maximum of 4.3 µmol kg−1 (Figure 2b).

The modelled spring phytoplankton bloom starts in April and therefore coarsely matches with the timing of the satellite ob-

served spring bloom (Figure 3). Then, simulated surface Chl-α ranges between 3 to 4 µg kg−1 across the entire shelf, with10

some nearshore areas reaching surface Chl-α levels of 5 µg kg−1. However, satellite images suggest that in April, Chl-α con-

centrations are more patchy than shown by the model, with lower concentrations across the shelf (1-2 µg kg−1). While peak

observed Chl-α concentrations between 7 and 9 µg kg−1 are localized in southeast Alaska in May, simulated Chl-α levels of 5

8
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Figure 3. Monthly climatology for satellite based (left, MODIS) and simulated (right) surface Chl-α concentrations for (a) March, (b) April,

(c) May, (d) July, and (e) September. Source for MODIS data: (MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, 2014,

Accessed 08/17/2019)

µg kg−1 are more wide spread along the coast, with peak concentrations of 6 to 7 µg kg−1 in some select areas. In July through

August, simulated Chl-α levels slowly taper off, though some nearshore areas still reach peak concentrations of 6 µg kg−1.

In September, on-shelf modelled Chl-α are < 3 µg kg−1. To sum up, observed Chl-α concentrations are lower than suggested

by the model across the shelf and the domain throughout the summer. With exception of November through February, when

modelled Chl-α concentrations are < 1 µg kg−1, standing stock Chl-α concentrations are also overestimated by a factor of two5

by the model throughout the year.

9
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Figure 4. Visual comparison of vertical sections of (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), and (d) dissolved

inorganic carbon (DIC, µmol kg−1), (e) pH, and (f) aragonite saturation state (Ωarag) of observations taken along the Seward Line in May

(left, Evans et al. (2013)) and corresponding model output (right). The model output was sampled at locations where observations were taken.

Observations and model points were then vertically and horizontally interpolated onto the same grid and averaged across years 2008 - 2012.

The white area depicts observed sampling depth in the left panel and seafloor or coast in the model output.

3.3 Model skill to simulate spring and fall oceanographic conditions

Inorganic carbon observations in the GOA have been collected every spring and fall along the historic Seward Line since 2008

(Evans et al., 2013). Here, we compare May and September monthly means of our 2008 - 2012 model output to the publicly

available ship board observations taken in May and September of the corresponding years. To do so, the model output was

sampled at the closest grid point to every Seward Line station. The model output and observations were then interpolated onto5

the same grid and averaged across all years for May and September.

In May, observations and model output clearly show the influence of freshwater on the coastal water properties, including

inorganic carbon chemistry (Figure 4). In nearshore surface areas, waters are cold, fresh, and low in TA and DIC concentrations.

The influence of freshwater is visible throughout the transect, but with slowly increasing values of salinity, DIC, and TA with

distance from the coast. The model generally reproduces these patterns well, although with slightly higher values for all three10

parameters across the transect. For example, observed surface salinity ranges between 31.4 at 59.8 ◦N and 32.2 at the end of

the transect. TA varies between 2143 µmol kg−1 and 2170 µmol kg−1, and DIC between 1965 µmol kg−1 and 2017 µmol

kg−1. Simulated ranges of these parameters are similar (salinity: 31.7 - 32.4, TA: 2163 - 2203 µmol kg−1, DIC: 2009 - 2038

10
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Figure 5. Visual comparison of vertical sections of (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), and (d) dissolved

inorganic carbon (DIC, µmol kg−1), (e) pH, and (f) aragonite saturation state (Ωarag) of observations taken along the Seward Line in

September (left, Evans et al. (2013)) and corresponding model output (right). The model output was sampled at locations where observations

were taken. Observations and model points were then vertically and horizontally interpolated onto the same grid and averaged across years

2008 - 2012. The white area depicts observed sampling depth in the left panel and seafloor or coast in the model output.
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Figure 6. Taylor diagrams (Taylor, 2001) of model simulated temperature, salinity, total alkalinity (TA, µmol kg−1), dissolved inorganic

carbon (DIC, µmol kg−1), pH, and aragonite saturation state (Ωarag) compared to observations taken along the Seward Line in a) May and b)

September. Averaged modelled monthly means of May and September are compared to data collected during spring and fall cruises in years
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point shows the normalized root mean square misfit between modeled and observed data.
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Figure 7. Hovmoeller plots showing observed (left) and modelled (right) monthly mean surface (a) temperature (◦C), (b) salinity, (c) total

alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in May along the Seward Line between 2008 - 2012.

µmol kg−1). The largest bias in salinity (Sbias = 0.6), alkalinity (TAbias = 35 µmol kg−1), and DIC (DICbias = 46 µmol kg−1)

are found around 59.6 ◦N. The overestimation of salinity suggests that the freshwater influence is overly weak, leading to the

modelled overestimation of TA and DIC. However, the bias in DIC relative to the bias in TA is largest in the grid cell closest

to the coast, which leads to an underestimation of modelled pH and Ωarag of up to 0.09 and 0.29, respectively. The bias of

surface pH and Ωarag vanish with distance from the coast. At the offshore end of the transect, the model overestimates Ωarag5

by 0.07 (pH overestimation is insignificant). The larger difference in DIC relative to TA near the coast is likely due to an

underestimation of biological carbon draw-down, leading to the underestimation of pH and Ωarag in nearshore surface waters.
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Figure 8. Hovmoeller plots showing observed (left) and modelled (right) monthly mean surface (a) temperature (◦C), (b) salinity, (c) total

alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in September along the Seward Line between 2008 - 2012.

At depth farther offshore, salinity, DIC and TA enriched waters are visible on the shelf. As a result, the springtime in situ

aragonite saturation horizon (depth where Ωarag = 1) is shallower offshore than nearshore. Observations suggest that with a

depth of the aragonite saturation horizon of about 200 m, the seafloor on the shelf up to 59.1 ◦N is undersaturated with regard to

aragonite. The model underestimates the aragonite saturation horizon depth slightly. However, because the model’s bathymetry

is too shallow (white areas in Figure 4), modelled bottom water masses across the shelf are not understaturated with regard to5

Ωarag north of 59 ◦N.

In September, nearshore surface waters are warm (∼ 11◦C) and much fresher than in spring. Observed surface salinity is as low
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as 27.6 at 59.8 ◦C and increases to 32 salinity units at the end of the transect. Modelled surface salinity ranges between 26.3 and

31.8. It is important to note that observed surface salinity at the station closest to the coast is also as low as 26.8, but is masked

out in this point by point comparison. As a result of this bias in salinity, modelled TA and DIC are underestimated by 160 and

60 µmol kg−1 at 59.8 ◦N. Because the model is likely underestimating the magnitude of late season phytoplankton blooms,

the bias in DIC is not as large as in TA. Modelled surface Ωarag is 1.48 at the coast and thereby underestimates observations5

by 0.27. At depth, model output aligns well with observations. Both observations and model output suggest that bottom waters

across the Seward Line transect are undersaturated with regard to aragonite in fall. Observations also show an intermediate

maximum in DIC at about 150 m depth, which leads to an even shallower aragonite saturation horizon. This small scale feature

may be due to remineralization at mid depth and is not simulated by the model. Overall, the model does a reasonable job in

simulating salinity, temperature, TA, DIC, pH, and Ωarag in spring and in fall, with Pearson Correlation Coefficients between10

0.75 and 0.95. All standard deviations and Correlation Coefficients between observed and modelled variables are summarized

in Taylor Diagrams in Figure 6.

3.4 Model skill to simulate interannual variability

The GOA oceanography undergoes large interannual to decadal variability as a result of the El Nino Southern Oscillation

(ENSO) and Pacific Decadal Oscillation (PDO) and other climate modes of variability that drive changes in freshwater flux,15

water temperature and winds (Whitney and Freeland, 1999; Hare and Mantua, 2000). These physical changes are likely trans-

lated into the inorganic carbon chemistry. As a first approach, we use Hovmoeller plots to investigate the model’s skill to

simulate interannual features (Figures 7 and 8). In the following, we will describe observations of years that stand out within

this five year record and determine whether these features were captured by the model.

Observed and modelled springtime surface temperature show large interannual variability. Within the 5 year long record, 200820

was a particularly cold spring, with surface temperatures around 5 ◦C. The model also simulated May 2008 as the coldest

spring within this five year period, however, it overestimated the temperature by about 1 ◦C. In May 2010, observed sea sur-

face temperatures were particularly high (> 6 ◦C) across the shelf, which was well reflected by the model. While the model also

suggests high temperatures in the previous spring, the observations do not show a particularly warm spring in 2009. In May

2012, colder surface temperatures (< 6 ◦C) prevailed near the coast and through station 15 in both the observed and modelled25

data.

The interannual variability in salinity is visible by how far the freshwater penetrates into the open ocean. For example, obser-

vations and model output suggest that freshwater penetrated farther offshore in years 2008, 2009, and 2011. A similar pattern

is visible in observed and modelled TA, with low TA values (<2170 µmol kg−1) advecting across the shelf and beyond in

2009 and 2010. As already described in Section 3.3, the model persistently overestimates DIC in spring and summer. While30

the influence of low salinity on DIC becomes visible in 2009 and 2010, the observed low DIC in 2012 was not reproduced by

the model, likely because it was driven by strong biological carbon drawdown rather than freshwater.

The anomalous warm sea surface temperatures observed in spring 2010 remained persistent into fall, with temperatures around

13 ◦C across the whole transect (Figure 8). This anomalously warm fall was well simulated by the model. Interestingly, in
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the same year, observations suggest anomalously high salinities penetrating closer to the nearshore than in other years, which

was not reflected by the model. However, observed lower salinities mid transect in 2009 and 2011 were also simulated by the

model, which directly translated into TA and DIC. Overall, fall DIC levels were better simulated by the model than spring

conditions.

4 Seasonal inorganic carbon variability along the Seward Line5

The historic Seward Line timeseries gives insights into the inorganic carbon dynamics in May and September. Here, we use

our model output to explore other months of the year that are not covered by inorganic carbon observations (Figure 9). Lowest

surface temperatures of < 3◦C are found nearshore in February and March. In spring, surface water slowly warm, reaching an

annual maximum in July/August, when surface temperatures are > 13◦C. Highest nearshore surface salinities (Smax=31) are

observed in late winter, which decrease to 24 salinity units between August and October, when the influence of freshwater is10

strongest. The freshwater also decreases surface TA and DIC to their lowest levels of 1625 µmol kg−1 and 1500 µmol kg−1

in August. The additional biologically driven decrease of DIC between April and June, when surface Chl-α concentrations

(up to 7 µg kg−1) are highest, leads to relatively high pH (8.13) and Ωarag (2.05), despite the freshwater influence and its

diluting character. Once phytoplankton blooms begin to taper off in July and August, DIC slowly increases relative to TA,

leading to a decrease in Ωarag to a low of 1.21 and pH of 8.05 in October. Ωarag remains < 1.5 across the whole water15

column between January and March. In April, the incoming light and nutrient concentrations are sufficient again to trigger

phytoplankton blooms that slowly decrease DIC and thereby increase Ωarag and pH.

Starting in May, downwelling relaxes and more saline and DIC rich waters intrude onto the shelf, leading to maximum bottom

salinities and DIC of Smax=33.6 and DICmax=2186 µmol kg−1, respectively, on the shelf. Relaxation of downwelling results

in aragonite undersaturation of bottom waters across the transect between June and January. Destruction of organic matter and20

remineralization additionally increase DIC between June and September and thereby further enhance aragonite undersaturation

(Figure 10 b). Only nearshore areas north of 59.8◦N remain oversaturated throughout the year. The onset of downwelling in

September typically starts the annual decrease of near-bottom shelf salinity and DIC (Ωarag and pH) levels, which reach their

respective minimums in late winter or spring.

5 Influence of glacial freshwater on surface Ωarag , pH, and pCO225

Glacial freshwater is the most important driver of the near-shore inorganic carbon dynamics of the GOA in summer and fall.

In the following, we further investigate the influence of coastal dilution from the non-zero DIC and TA and rather acidic

freshwater end-member (Table 2) on surface Ωarag, pH, and pCO2 (Figure 11a). To do so, we used mixing diagrams of surface

Ωarag, pH, and pCO2 versus salinity from an area starting at the Kenai Peninsula to south of Yakutat Bay. Note that the plots

show the effects of salinity changes, and biogeochemistry on surface Ωarag, pH, and pCO2, as well as seasonal differences30

in temperature and in the off-shore and freshwater end-members DIC and TA. Following Rheuban et al. (2019), we used a
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Figure 9. Seward Line transect of modelled (a) temperature (◦ C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), (d) dissolved inorganic

carbon (DIC, µmol kg−1), (e) pH, (f) aragonite saturation state (Ωarag), (g) dissolved oxygen (DO, µmol kg−1), (h) dissolved iron (FE,

nmol kg−1), (i) nitrate (NO3 µmol kg−1), and (j) Chl-α (µg kg−1) in January, April, July, and October (averaged across 2008 - 2012). Note

that Chl-α is only plotted across the upper 75 m of the water column. The black solid line in row f indicates Ωarag = 1.

linear Taylor decomposition to evaluate the importance of these different drivers in controlling the variations in surface Ωarag,

pH, and pCO2 (Figure 12). The shaded areas in Figures 11c and d show the additive effect of salinity and dilution with

seasonally varying DIC and TA freshwater end-members. Deviations from the shaded area are driven by biogeochemistry and
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closest to the coast and b) on the seafloor at 59.2 ◦N along the Seward Line. Note that colorbars are on different scales.

temperature. We focus our analysis on April and August because these two months are, respectively, the least and most affected

by freshwater.

In April, surface salinity is > 30, with exception of a few near-shore spots in Prince William Sound and Yakutat Bay, where

surface salinity can decrease to 28 salinity units (Figure 11 a). Surface Ωarag ranges between 1.5 and 1.85, pH varies between

8.08 and 8.10, and pCO2 between 280 µatm and 340 µatm (Figures 11 b and c).5

In August, surface salinity can be as low as 18 in Prince William Sound and near Copper River, with a strong salinity gradient

increasing towards offshore, reaching salinities > 32 there. Surface Ωarag ranges between 1.14 and 2.5 and pCO2 between 205

µatm and 333 µatm, both reflecting the strong influence of freshwater. In contrast, the range of pH in August is similar to the

one in April (8.07 to 8.16), suggesting that freshwater affects pH to a much smaller degree than Ωarag and pCO2. Decreasing

salinity exerts a positive effect on both, Ωarag and pH, while mixing with low TA and DIC freshwater end-members has a10

negative effect. For pH, the positive effect of decreasing salinity is much stronger than for Ωarag, thereby cancelling or even

counteracting, depending on the freshwater end-member, the negative effect of mixing. In contrary, Ωarag is more strongly
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affected by mixing than by salinity, resulting in a decrease of Ωarag by about 1 unit (Figures 12a and b). In contrary to Ωarag

and pH, decreasing salinity exerts a strong negative effect on pCO2, which is also supported by, but to a lesser extent, a negative

effect of mixing with low TA and DIC end-members (Figure 12c). Deviations from the shaded areas in Figure 11d are mainly

driven by biogeochemistry, decreasing Ωarag and pH, and increasing pCO2. Temperature effects are small for Ωarag and pH,

whereas for pCO2, the negative effect of decreasing temperature is similar to the negative effect of mixing with low TA and5

DIC freshwater end-members, enhancing a decrease in pCO2.

6 Summary and Conclusions

Here, we introduced a new regional biogeochemical model GOA-COBALT and evaluated the model’s skill in simulating sea-

sonal and interannual inorganic carbon patterns. Our model set-up is unique because it includes a moderately-high resolution,

three-dimensional regional ocean circulation model, a complex ecosystem model with an ocean carbon cycle, a high-resolution10

terrestrial hydrological model, and is forced with reanalysis products to simulate interannual variability and long term changes

over the past 30+ years. In addition, we used available TA and DIC observations to parameterize seasonal concentrations of

DIC and TA in the freshwater forcing.

Comparison with a limited amount of in situ inorganic carbon observations showed that the model is able to reproduce the

general hydrographic and inorganic carbon patterns in spring and fall. The GOA-COBALT was particularly successful in re-15

producing the depth of the aragonite saturation horizon, showing oversaturated conditions across large parts of the shelf in

May and undersaturation across the shelf in September. The largest deficiency of GOA-COBALT may be that it generally

overestimates Chl-α concentrations and that the Chl-α peak is simulated in June rather than in May. Interestingly, results of the

inorganic carbon data - model analysis suggest, however, that DIC is not drawn down enough by spring biological production.

This contradiction may be due to an underestimation of modelled C:Chl-α ratios, which are dependent on light and nutrient20

limitation (Geider et al., 1997; Stock et al., 2014). Modelled C:Chl-α of large and small phytoplankton on the shelf are < 30

g/g and < 40 g/g respectively. Measurements of C:Chl-α of small phytoplankton in the GOA suggest a median C:Chl-α of

41 g/g during intense and early blooms and 76 g/g in low Chl-α conditions (Strom et al., 2016). Equivalent data for large

phytoplankton does not exist.

GOA-COBALT is more successful in reproducing surface inorganic carbon patterns in September, when freshwater is the25

dominant driver of the system. In addition to its capacity of resolving prominent seasonal inorganic carbon variability, the

model also resolved some of the observed interannual differences present in the publicly available five year-long inorganic

carbon Seward Line record. However, the GOA-LME is largely undersampled despite its large spatial and temporal variability.

The limited amount of inorganic carbon observations that cover one transect in May and September, and include a few newer

nearshore time-series are not sufficient to properly evaluate the model. More observations are needed to test the model’s skills30

in areas other than the Seward Line and during other times of the year. While some of the year to year differences seen in Fig-

ures 7 and 8 may be a result of aliasing the spatial and temporal variability that exists during the cruises, the most prominent

anomalies have been described in the past. For example, as a result of anomalies in coastal runoff, winter cooling, stratification,
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Figure 12. Component distributions of the linear Taylor decomposition of surface a) Ωarag , b) pH, and c) pCO2 versus salinity in April

(left) and August (right). Following Rheuban et al. (2019) components are total perturbation from the oceanic end-member (Salinity > 32),

perturbations due to salinity, temperature, biogeochemistry, freshwater mixing, and an estimated residual term.

and winds, sea surface temperature was by 1.5 ◦C colder in spring 2006, 2007, and 2008 than average spring temperatures, and

the lowest since early 1970 (Janout et al., 2010). In contrast, as a result of warm air temperatures, GOA sea surface tempera-

tures in 2009 were anomalously high (Danielson et al., 2019).
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The relationship between Ωarag, pH, and pCO2 in freshwater influenced coastal waters is different than what is found else-

where. Similarly to what Evans et al. (2014) observed in situ near a tidewater glacier in Prince William Sound, our freshwater-

inorganic carbon analysis showed that low Ωarag values are not always accompanied by low pH and high pCO2 values in this

glacially influenced environment. This decoupling of the three inorganic carbon parameters is driven by the additive effects of

salinity and mixing with low TA and DIC end-members. Whether the freshwater induced low surface pCO2 caused enhanced5

CO2 uptake in coastal areas, as speculated by Evans et al. (2014), could not be confirmed here and will need additional inves-

tigation.

The strong influence of freshwater on the inorganic carbon system emphasizes the importance of choosing the right DIC and

TA freshwater endmembers in order to correctly model the inorganic carbon dynamics in this area. However, there is a lack of

biogeochemical data that describes the composition of different freshwater sources on seasonal timescales. The biogeochemi-10

cal composition of freshwater is influenced by its exposure to basal rock and therefore by the pathways and duration it takes,

and processes it undergoes until it is introduced to the ocean. Current sources of freshwater in the GOA are tidewater glaciers,

proglacial streams, and non-glacial streams, each exposing the water to basal rock, soils and the atmosphere differently. As

this region continuous to rapidly deglaciate (Arendt et al., 2002; Larsen et al., 2007; O’Neel et al., 2005), not only the amount

of freshwater discharge will increase (Beamer et al., 2017), but most of the glaciers surrounding the GOA will recede away15

from the ocean and into higher elevations (Huss and Hock, 2015), resulting in a change of the biogeochemical composition

of freshwater. This and previous studies have shown that freshwater discharge is the largest driver of the nearshore inorganic

carbon dynamics in summer and fall, and is known to exacerbate the effects of ocean acidification (Evans et al., 2014; Siedlecki

et al., 2017; Pilcher et al., 2018). Understanding the composition of freshwater sources is, therefore, particularly important for

the study of long-term trends of ocean acidification in the GOA-LME. As a first best approach, we used seasonal observations20

of DIC and TA from Kenai River (proglacial river) and applied it to every freshwater point source across the domain, however

this approach is likely masking out large differences in the biogeochemical composition of freshwater input that could have

implications on the coastal inorganic carbon system.

The only other regional biogeochemical model with an oceanic carbon cycle (Siedlecki et al., 2017; Pilcher et al., 2018) used

Royer (1982)’s monthly riverine input time-series and applied it equally to the top cell along the coast, masking out the large25

spatial and interannual variability of freshwater input along the GOA coast. Furthermore, Siedlecki et al. (2017) simulated

year 2009, with only one year of spinup and with DIC and TA boundary conditions based on salinity relationships. Their static

freshwater TA concentration to represent a tidewater glacier was 650 µmol kg−1, while freshwater runoff did not affect coastal

DIC at all. In comparison, our GOA-COBALT model and the Siedlecki et al. (2017) both simulate the lowest surface Ωarag in

winter and highest in summer (Figure 13). Similarly, the aragonite saturation horizon is shallowest in summer and fall in both30

models. In our model, the aragonite saturation horizon is shallower throughout the year, thereby causing aragonite undersatu-

ration across wider areas on the shelf. A thorough model inter-comparison study would need to be done to understand how the

new features of our model set-up have affected and potentially improved the modeling results over Siedlecki et al. (2017) and

Pilcher et al. (2018).

Our simulation results give new and important insights for months of the year that lack in situ inorganic carbon observations.35
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Figure 13. Climatological mean a) surface aragonite saturation state (Ωarag) and b) aragonite saturation horizon (m) December, January,

and February (DJF), March, April, and May (MAM), June, July, and August (JJA), and September, October, and November (SOM).

For example, the majority of the near-bottom water along the Seward Line is seasonally under-saturated with regard to arago-

nite between June and January. Such long and reoccurring aragonite undersaturation events may be harmful to CO2 sensitive

organisms. Furthermore, between January and March, conditions are unfavorable for pteropods across the entire water column

with aragonite saturation state < 1.5. This study also made it apparent that more observations across the shelf and different

times of the year are needed in order to improve the model and evaluate its skills in areas other than near Seward.5

Future work will focus on the progression of ocean acidification and climate change and impacts on the inorganic carbon

chemistry. We also anticipate this simulation to be a useful tool for the study of the duration and intensity of extreme events

and climate-ocean teleconnections. With increased confidence in the model, another logical next step would be to guide the

future expansion, diversification, and optimization of OA observing systems in the GOA-LME.
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Code and data availability. The code and forcing files are available on zenodo.org under DOI’s 10.5281/zenodo.3647663, 10.5281/zen-
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